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f(R) gravity & its representations

The action of the f(R) theory:
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Representation in Jordan frame:
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Representation in Einstein frame:
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Which frame 1s physically correct?

As a generic aspect of any scalar-tensor theory, two frames are available to
describe the BD theory. One frame is called the Jordan frame (JF') in which the
BD field equations were originally written and the BD scalar field played the role
of a spin-0 component of gravity. The other is the conformally rescaled Einstein
frame (EF') in which the scalar field plays the role of a source matter field. There
is a long standing debate as to whether the descriptions of the BD theory in
the two frames, JF and EF', should be considered physically eqivalent. In order
to get a flavor of this debate and the resulting confusion, we should only say
that physicists are divided roughly into six groups depending on their attitude
to the question. They can be listed as follows. Some authors: (1) neglect the
issue, (2) think that the two frames are physically equivalent, (3) consider them
physically nonequivalent but do not provide supporting arguments, (4) regard
only JF as physical but, if necessary, use EF for mathematical convenience, (5)
regard only EF as physical, (6) belong to two or more of the above categories!

from Bhadra et. al., MPLA 22(2007)367



Which frame 1s physically correct?
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A gravitational theory compatible with Mach’s principle was published recently by Brans and Dicke. It is
characterized by a gravitational field of the Jordan type, tensor plus scalar field. It is shown here that a
coordinate-dependent transformation of the units of measure can be used to throw the theory into a form
for which the gravitational field appears in the conventional form, as a metric tensor, such that the Einstein
field equation is satisfied. The scalar field appears then as a “matter field” in the theory. The invariance of
physical laws under coordinate-dependent transformations of units is discussed.

N a recent paper,! a modified relativistic theory of

gravitation, closely related to Jordan’s theory,? was
developed, compatible with Mach’s principle. It was
indicated that the resulting formalism was but one
particular representation of the theory, based upon a
particular definition of the units of mass, length, and
time.

The purposes of this note are, first to discuss very
briefly the invariance of physical laws under units
transformations,® and second to give another representa-
tion of the above theory, completely equivalent to it and
derived from it by a simple transformation of units.

The first representation of the theory' could be
characterized concisely as a relativity theory for which

must be invariant under a transformation of units. (The
units and dimensions employed need not be three in
number, nor need they be limited to the traditional
mass, length, and time.)

The invariance which we wish to consider here is
broader than the elementary consideration described
above. Imagine, if you will, that you are told by a space
traveller that a hydrogen atom on Siruis has the same
diameter as one on the earth. A few moments’ thought
will convince you that the statement is either a defini-
tion or else meaningless. It is evident that two rods side
by side, stationary with respect to each other, can be
intercompared and equality established in the sense of
an approximate congruence between them. However,
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Which frame 1s physically correct?
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The conformal transformation’s controversy: what are we missing?
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An alternative interpretation of the conformal transformations of the metric is discussed according
to which the latter can be viewed as a mapping among Riemannian and Weyl-integrable spaces. A
novel aspect of the conformal transformation’s issue is then revealed: these transformations relate
complementary geometrical pictures of a same physical reality, so that, the question about which
is the physical conformal frame, does not arise. In addition, arguments are given which point out
that, unless a clear statement of what is understood by ”equivalence of frames” is made, the issue
is a semantic one. For definiteness, an intuitively "natural” statement of conformal equivalence is
given, which is associated with conformal invariance of the field equations. Under this particular
reading, equivalence can take place only if the metric is defined up to a conformal equivalence class.
A concrete example of a conformal-invariant theory of gravity is then explored. Since Brans-Dicke
theory is not conformally invariant, then the Jordan’s and Einstein’s frames of the theory are not
equivalent. Otherwise, in view of the alternative approach proposed here, these frames represent
complementary geometrical descriptions of a same phenomenon. The different points of view existing
in the literature are critically scrutinized on the light of the new arguments.

PACS numbers: 02.40.-k, 02.40.Ky, 02.40.Hw, 04.20.-q, 04.20.Cv, 04.50.Kd, 04.50.+h, 11.25.Wx



Conformal frames are physically indistinguishable

The conformal transformation:
g5,(xa)  —  go(xa) =Q%(2%) g, (xa)

e The conformal factor €2 is position-dependent
e Physics must be invariant under a choice of the units

e Rescaling the units of length, time, and mass is a conformal
transtformation

e Frames J and & are physically equivalent provided that the
units of physical quantities are allowed to scale with )" in &£

e We keep the units fixed in J while admit them to run in &

e Conformal transformations are rescalings of units, i.e.
frame transformations, NOT coordinate transformations



Running units, an example

e The cosmological redshift is the shift in the spectra of the dis-
tant light sources in the universe when compared with the spec-
tra of the light sources on the Earth:

where )\ is the wavelength of a spectral line of the distant
source observed on the Earth, and Ay is that of the source on

the Earth.

Chi, Gu & Lee (2013)



Running units, an example

e Consider a Robertson-Walker metric in the Jordan frame:
ds® = —a’(n) (—dn? + da* + dy® + dz?)
and consider the conformal transformation,
Guv () = () g (2),  Qz) = 1/a(n)

that transforms the Robertson-Walker metric in the Jordan
frame to a Minkowskian metric in the Einstein frame:

ds* = —dn® + dz* + dy* + d2?



Running units, an example

e In the Jordan frame, due to the expansion of the universe, the
wavelength of a light will be redshifted by a tactor

a(mo)
a(ns)

El—I—Zg

when traveling from the source to the Earth, where ny and n;
respectively denote the present time and the time when the
light is emitted, and z, denotes the gravitational redshift. Ac-
cordingly,

Ao = la(mo)/a(ns)] Aem
where A\, is the wavelength of the light when emitted.



Running units, an example

e If we further assume that in the Jordan frame the wavelength
of a spectral line at the source at the emission time is the same
as that on the Earth at present, i.e.,

)\em — )\@

we will obtain

1+ 2 Ao/ e
[a(nO)/a(ns)] ()‘em/)‘@)

a(o)/a(ns) = 14 2



Running units, an example

e In contrast, in the Einstein frame there is no gravitational red-
shift because the space-time is Minkowskian in this example,
and therefore

Ao = Aem

e However, there is another redshift caused by the conformal
transformation that makes the units in the Einstein frame run-
ning (i.e., different units at different space-time points), if we
assume the units are fixed in the Jordan frame.

e In this case the units depend on time due to the time-dependent
conformal factor, (2(x) = 1/a(n). In particular, in the Einstein
frame the length unit ¢;, at different times are related by

Co(m) [ (n2) = Q(m) /QUn2) = a(nz)/a(n)



Running units, an example

e Accordingly, the length unit at the emission time and that at
present are different. For example, the length 1 meter at the
emission time is different from 1 meter at present, and they are

related by 1 m*(Newm) = |a(10)/a(Nem )] 1 M (10)

e As a consequence, the wavelength of a spectral line of the dis-
tant source at the emission time and that of the source on the
Earth at present are different and related by

Aem = 1@(100)/a(Nem)] A
and therefore in the Einstein frame

14+ z°

Ao/ Ag
Aem/ Mo
a(WO)/a(nem)
= 1+z,=1+2



The line element 1n Jordan frame can be written as
ds* = g, da*dz” = a®*(n) (—dn? + dx*) (1)

where the cosmic time ¢ has been recasted in the conformal time 7 as dt = a(n)dn. We
assume fixed units for physical observables in this frame, i1.e. there is no local changes in
units for the Jordan frame.

When Jordan frame experiences a conformal transformation with a position-dependent

conformal factor €2, the line element is governed by

ds; = g5, datdz, = al(n) (—dn® + dx*) = Q%g,, datdz" (2)

with
a*(n) = Qa(n) (3)
dt* = a®(n)dn = Qdt (4)

At = af(n)dx = Qd¢ (5)



Rescaling of Units

Conformal Transformation = Units Rescaling
dse =Qds = (£=Q4, t£t=Qt, = c=1 (6)

If we fix the Planck costant i = 1, then

mu

" Q

1 = m= =Q 'm, (7)

Therefore, the conformal factor can actually be viewed as the normalized (w.r.t. J frame)
standard unit scale of length in £ frame, 1.e.

£ £
b, tn my, T,
l, w mE Tf

u

(8)

The last equality holds if we choose the Boltzmann constant kg = 1. The consequence of
the local transformation of units (the running units) give rise to

dsg(x4)  Qx4)  a®(na)

ds:(xp) ~ Qxg) @ (ng) ©)




Measured values of a physical quantity

In light of the above relations, we see that the measured value X’ _ of any physical quantity
X¥ in &€ is actually a constant regardless the local changes in the associated unit u%, i.e.

X(x4) Af(xp)

ug(x4)  uf(xp)

E _ VE € £ _
X° = Uy = obs —

obs

(10)

Chi, Gu & Lee (2013)



Redshifts

In JF, we have

X a(no) _ @
1+Z_)\n_a(n)_a (11)
In EF,
4 = 260m0) _ L5(m0)/S2x0) & () [a® (mo) /a*(m)] _ €5 (n) [a* (o) /a* ()] (12)
T M) La(m)/Q(x0) £ (0) Cem (1) [x0) /Q(Xem)]
But at the emitting time we have ¢2_(n) = £5(n), we have
1+ 2 = ag(no)/Q(XO) _ a(770) _ ao — 142 (13)

af(n)/QUx)  a(n) a

Hence, the redshift is a frame-invariant quantity (fiq).



CMB Temperature

In JF, the CMB temperature is governed by

const. const. Tom(n)
To=T00) =5 00~ T (A +2) ~ 142

While in EF,

const. const. - 1%.(n)

Tog = T(ﬂo) =

Now(mo) ~ N M+ 2) 1+ 2

Wein’s law remains the same regardless which frame we take.



Distances

Since the comoving distance at redshift z, 7(2), is obtained by using the null geodesic ds* = 0,

which is obviously frame-invariant, therefore it is a fiq.

T to n
r(z):/ dr:/ @=/ dn = 1¥(z)
0 t @ 10

The angular diameter distance:

_agr  agrt
14z 14z

da = d5
Likewise, the luminosity distance is also a fiq:

dr, = aor(l+ 2) = agr®(1 + 2¢) = dj

Accordingly, the relation between d4 and dj, is also frame-invariant:

dr(2) = da(2)(1+ 2)°

(16)

(17)

(18)

(19)



Hubble parameter

The comoving distance is usually written as
. / dn = / dz / ? dz
dz/dn . flj C‘Il—f] o (1+2)aH

oH = a*H® = Hf:H-(i

aS

We see that
) — HQ!

On the other hand, we can calculate d z/dn in EF according to the fiq. 1+ 2°:

20 agaf]

d 2*
— (14 25) |22
1+

dn

aé’

Thus, one has
£

0 £ z 88 £ 859
r:/ dz :/ (1+ 2°) nt _
Le d28/dn 0 at Q

Consequently, c £ p £ £ £
aé Q) a at

Chi, Gu & Lee (2013)



H 1s not a fiq, but af 1s!

I T T T T I T T T T I T T T T I T T T T I

from S. Capozziello et. al., PLB 689 (2010) 117



Geodesics 1in Jordan/Einstein representations

In the Jordan frame:

d (dx“ Lo dx“d:zz”_o
do \ do Y do do

In the Einstein frame:
d (dz“ L fo dzt dx” N 0, dxt dx®
ds \ ds Y ds ds Q ds ds
By proper re-parametrize the affine parameter and employing the

relation between the Christoffel symbol in the two frames, it 1s
straightforward to show that the geodesic equation becomes

d (dx® L fo dzt dx” _ 0
do \ do Y dg do

= 0.

Quiros et. al. arXiv:1108.5857



Summary

e Conformal transformation is merely the rescaling of units, not
the transformation of coordinates

e JI and EF are indeed physically equivalence, or physically in-
distinguishable, at least in the regime of classical gravity

e One must caretully select the corresponding physical quantities
to compare within these two frame



